Megyr Documentation

Christopher Wells

Nov 06, 2019

Contents:

1 Getting started 1
L1 Pre-requiSites v v v o e 1
1.2 Settingup aproject o ot e e e e e e e e 1
1.3 MESA . . e 2
1.4 GYRE . . e 3
LS Summary e e e e e e e e e e e e e 6
2 Configuration 7
2.1 Input . ..o e 8
2.2 OUIPUL © . v e e e e e e e e e e e e e e e 8
2.3 0 SEttiNgS . . v v o e 9
2.4 0 StAZES . . .t e e e e e e e e e e e e e e e e e 10
3 Indices and tables 13

CHAPTER 1

Getting started

This tutorial will walk you through running Megyr on a grid of parameters for MESA and GYRE. It assumes that you
have some familiarity with how to configure and run MESA and GYRE.

1.1 Pre-requisites

Before starting this tutorial, you should make sure to install pipenv and pyenv. These tool are not required to use
Megyr, but they make using it a lot easier since they can make sure that you are using the correct Python version.

You will also want to make sure that you have MESA and GYRE installed and working.

1.2 Setting up a project

To get started, we will first need to create a new project directory to work in. To run MESA we will need some of the
files that the MESA project template has, so we can create a copy of that by running the following commands in the
terminal.

cp —-r SMESA_DIR/star/work megyr-tutorial
cd megyr-tutorial

Now that we have a directory we can work in, we’ll want to setup a pipenv environment with a Python 3 installation
and install megyr.

pipenv —--python 3.6
pipenv install megyr

Next we will want to create the Python script for using Megyr. To do this, we can create a file called megyr_config.
py with the following code.

Megyr Documentation

import megyr
def main () :
megyr.run ({
"input": {
"mesa_configs": ["inlist.mustache"]
}I
"output": {
"mesa_profile_summary_file": "mesa_profile_attributes.csv"
}I
"stages": {
"mesa_params": {
"initial_mass": [1, 1.1, 1.5]
}
}
})
if name == "__main__ "
main ()

For now we will just be running MESA against 3 models, with initial masses of 1, 1.1, and 1, 5 M_sun. We will be
using one inlist config file for MESA, and output summaries of the profile files that MESA generates.

1.3 MESA

1.3.1 Setup
Now that we have our script to run MESA, we will need to get the executable to use to run MESA and the configuration
file to run MESA on.

Since we created our project from the MESA project template, we can run the following command to compile the
MESA star executable.

’./mk ‘

Next we will want to setup the MESA inlist configuration file to use. By default the MESA project template gives us
three inlist files, but for now we will remove them to replace them with a simpler one.

’rm inlist inlist_pgstar inlist_project ‘

Now we will create the inlist file we will use. Megyr allows you to provide uses mustache templates for configuration
files which it will fill in the parameter values of at runtime. So we can create a file called inlist .mustache with
the following contents.

&star_job

! begin with a pre-main sequence model
create_pre_main_sequence_model = .true.

/ !'end of star_job namelist

&controls

(continues on next page)

2 Chapter 1. Getting started

Megyr Documentation

(continued from previous page)

starting specifications
initial_mass = {{initial_mass}} ! in Msun units

stop at 2 Gyr
max_age = 2000000000

/ ! end of controls namelist

You can see that for the initial_mass we are setting it to { {initial_mass}}. Since this is a mustache
template, Megyr will fill in any instance of { { some_variable}} with the value of the name that is inside of the
two curly braces.

1.3.2 Running

We can then execute our Megyr script by running the following command in the terminal.

pipenv run python megyr_config.py

You should then see output appear in the terminal from the MESA runs. Wait for the MESA runs for all three models to
complete. You can then take a look at the files that MESA and Megyr outputted by running the following commands.

1ls out
1ls out/mesa_initial_mass_1_
less out/mesa_initial_mass_1__ /mesa_profile_attributes.csv

The mesa_profile_attributes.csv files that we had Megyr create for each model contain summary infor-
mation from all of the profile files that MESA outputted.

Now, if you try to rerun the Megyr script you will see one of the nice features of Megyr.

pipenv run python megyr_config.py

You will notice that the MESA runs are not repeated, since Megyr notices that they have already been run. Megyr will
keep the results from MESA and GYRE runs, and for any run that completed, Megyr will not rerun it and will instead
work on the next task that has not yet been completed.

1.4 GYRE

1.4.1 Setup

In order to get Megyr to run GYRE on the different MESA models we will need to make some changes to our
inlist.mustache and megyr_config.py files as well as add a GYRE config file template.

First we will need to modify our inlist .mustache file to have MESA output pulse files for GYRE to process. To
do this we will need to add the following lines to the cont rols section of the config file template.

! OQutput pulse files for GYRE

pulse_data_format = 'GYRE'
write_pulse_data_with_profile = .true.
add_center_point_to_pulse_data = .TRUE.
add_double_points_to_pulse_data = .TRUE.

1.4. GYRE 3

Megyr Documentation

Next we will need to create the GYRE config file template. So we’ll want to create a file called gyre. in.mustache
with the following contents.

&constants
/
&model
model_type = 'EVOL' ! Obtain stellar structure from an evolutionary model
file = '../LOGS/profile{{profile}}.data.GYRE' ! File name of the evolutionary,,
—model
file_format = 'MESA' ! File format of the evolutionary model
/
&mode
1 = {{1}} ! Harmonic degree
/
&osc
outer_bound = 'JCD'
variables_set = 'JCD'
inertia_norm = 'BOTH'
/
&num
diff_scheme = 'COLLOC_GL4' ! 4th-order collocation scheme for difference equations
/
&scan
grid_type = 'LINEAR' ! Scan for modes using a uniform-in-frequency grid
freg min = 10 ! Minimum frequency to scan from
freg min_units = 'UHZ' ! Units for freg min
freq_max = 500 ! Maximum frequency to scan to
freq_max_units = 'UHZ' ! Units for freg_max
n_freqg = 1000 ! Number of frequency points in scan
/
&grid
alpha_osc = 10 ! Ensure at least 10 points per wavelength in propagation regions
alpha_exp = 2 ! Ensure at least 2 points per scale length in evanescent regions
n_inner = 5 ! Ensure at least 5 points between center and inner turning point
/
&ad_output
summary_file = '{{ad_output_summary_file}}"' ! File name for summary file
summary_file_format = 'TXT' ! Format of summary file
summary_item_list = 'M_star,R_star,l,m,n_p,n_g,n_pg,omega, freq, freq units,E_norm'
—! Items to appear in summary file
freq_units = 'UHZ' ! Units for freg column
/

&nad_output
/

This GYRE config file template will let us specify a grid of profile and 1 values to run for each MESA model. It
is also set to output summary files of the adiabatic oscillation calculations to { {ad_output_summary_file}},
which will allow Megyr to be set to aggregate this data into a single csv file.

4 Chapter 1. Getting started

Megyr Documentation

Next we will need to modify our megyr_config.py script to enable Megyr to run GYRE using the config file
template we created.

First we will want to add the following setting to the output section of the config dict. This will set Megyr to
aggregate the adiabatic oscillation summary files that GYRE outputs. This will make it a lot easier to work with the
oscillation data.

’"gyreioscillationsiadisummaryffile": "oscillations_ad.csv" ‘

Next we will need to set Megyr to use the GYRE config file template that we created. We can do that by adding the
following line to the input section of the config dict.

’"gyre_config": "gyre.in.mustache" ‘

Then we will want to add the following function in order to tell Megyr what parameter values to use for the GYRE
parameter grid. Note that we can reference the MESA parameter combination and profile file data in order to set the
GYRE paramters based on these values.

def calc_gyre_params (mesa_params, mesa_data):
return
"1t [0, 1, 21,

Look at all the profiles that are at least 0.0001 Gyr in age
"profile": mesa_datal[mesa_data["star_age"] > 100000] ["profile"]

Finally we will want to set Megyr to use this function to determine the GYRE parameter grid to use for each MESA
model. We can do this by adding the following line to the stages section of the config dict.

"gyre_params": calc_gyre_params

After all of these changes, the Megyr script should look like the following.

import megyr

def main () :
megyr.run ({

"input": {
"mesa_configs": ["inlist.mustache"],
"gyre_config": "gyre.in.mustache"

I
"output": {

"mesa_profile_summary_file": "mesa_profile_attributes.csv",

"gyre_oscillations_ad_summary_file": "oscillations_ad.csv"
}I
"stages": {

"mesa_params": {

"initial_mass": [1, 1.1, 1.5]
}I
"gyre_params": calc_gyre_params

b

def calc_gyre_params (mesa_params, mesa_data):
return ({
"1": [0, 1, 21,

Look at all the profiles that are at least 0.0001 Gyr in age

(continues on next page)

1.4. GYRE 5

Megyr Documentation

(continued from previous page)

"profile": mesa_datal[mesa_data["star_age"] > 100000] ["profile"]

if name == "__main__ ":

main ()

1.4.2 Running
Now that we have made all of the changes to config files that we needed to make in order to have Megyr run GYRE,
we can now move on to running Megyr.

However, since we made a change to our MESA config file, we don’t want Megyr to reuse the data from the previous
MESA runs since we need them to be rerun in order to generate the pulse files that GYRE takes in.

We can have Megyr start over from scratch by simply removing the output directory out.

rm —-Rd out ‘

Now we can simply run the Megyr script in the same way that we did before.

’pipenv run python megyr_config.py ‘

Once Megyr finishes running, we can take a look at the summary files that Megyr created for the adiabatic oscillations
found in the GYRE runs by running the following commands.

ls out/mesa_initial _mass_1_ /
less out/mesa_initial_mass_1_ /oscillations_ad.csv

1.5 Summary

In this tutorial we created a simple Megyr project where we ran MESA and GYRE over a few models with differing
parameters. The general pattern we used can be adjusted to run MESA and GYRE with a different grid of parameters.

6 Chapter 1. Getting started

CHAPTER 2

Configuration

Contents

* Configuration
— Input
% mesa_configs
* gyre_config
— Output
* output_dir
* mesa_profile_summary_file
* gyre_oscillations_ad_summary_file
— Settings
x mesa_star_location
x gyre_location
* mesa_mp_threads
% gyre_mp_threads
— Stages
* mesa_params

mesa_derived

*

* gyre_params

* gyre_derived

Megyr Documentation

2.1 Input

2.1.1 mesa_configs

list([str]
The MESA configuration file mustache templates for Megyr to use when running MESA.
* Examples

— ["inlist.mustache", "inlist_project.mustache"]

2.1.2 gyre_config

str - [Optional]

The GYRE configuration file mustache template to use. If this value is provided, then Megyr will run GYRE against
the models outputted by MESA.

* Default
— None
* Examples

- "gyre.in.mustache"

Note: If you do not specify a value for gyre_config then Megyr will not run GYRE.

2.2 Output

2.2.1 output_dir

str - [Optional]

The directory that Megyr will place all of the temporary and output files and directories into. The directory should be
specified as a relative path from the directory that the Megyr script is run in.

e Default

- out

2.2.2 mesa_profile_summary_file

str or None - [Optional]

Tells Megyr where to output a summary of the MESA profile files for each model as a csv file. To set Megyr not to
output this kind of summary file, you can set this config value to None.

These summary values are also used by MESA to speed up re-runs, as they allow it to lookup all of the MESA profile
information from one file instead of having to aggregate together all of the outputted profile files again.

¢ Default

— mesa_profile_attributes.csv

8 Chapter 2. Configuration

Megyr Documentation

* Examples
— mesa_profiles.csv

— None

2.2.3 gyre_oscillations_ad_summary_file

str - [Optional]

Tells Megyr to output a summary of the adiabatic oscillation summary files as a csv file. The adiabatic oscillation
summary files must be set in the GYRE config template to be outputted to { {ad_output_summary_file}}.

For example, the GYRE config file template should have settings like the following in the ad_output section.

summary_file = '{{ad_output_summary_file}}"
summary_file_format = 'TXT'
¢ Default
— None
* Examples

— oscillations_ad.csv

2.3 Settings

2.3.1 mesa_star location

str - [Optional]
The path to the MESA star executable that Megyr will use to run MESA.
e Default

- star

2.3.2 gyre_location

str - [Optional]
The path to the GYRE execuatable that Megyr will use to run GYRE.
¢ Default

— SGYRE_DIR/bin/gyre

2.3.3 mesa_mp_threads

int - [Optional]
The number of Open MP threads to have MESA use.
* Default

— Will use the number of threads set in SOMP_ NUM_THREADS.

2.3. Settings 9

Megyr Documentation

* Examples

-4

2.3.4 gyre_mp_threads

int - [Optional]
The number of Open MP threads to have GYRE use.

¢ Default

— Will use the number of threads set in mesa_mp_threads, or if that is not set then will use the number

setin SOMP_NUM_THREADS.

» Examples

-4

2.4 Stages

2.4.1 mesa_params

dictorlist[dict]

If a dictionary, the parameter value possibilities to use to construct the grid of MESA models to run.

If a list, the parameter value combinations of the models to run.

e Examples

Use 6 models with varying y values and inital masses
{

"y": [1.0, 1.2, 2.5],

"initial_mass": [1, 5]

}

Use 2 models with different y and initial mass values
[

{ "y": 0.27, "initial _mass": 1 },

{ "y": 0.30, "initial mass": 1.5 }

2.4.2 mesa_derived

function[dict, dict] - [Optional]

The function to apply to each MESA parameter combination to extract additional values plug into the MESA config
templates specified in mesa_configs.

* Examples

Add a max age to use that is based on the initial_mass
def calc_mesa_derived (mesa_params) :
derived = dict (mesa_params)

(continues on next page)

10

Chapter 2. Configuration

Megyr Documentation

(continued from previous page)

initial_mass = mesa_params["initial mass"]
mass_lookup = {

"1": 1000000000,

"1.5": 500000000

derived["max_age"] = mass_lookup[str(initial_mass)]

return derived

2.4.3 gyre_params

function[dict, pd.DataFrame, dict] - [Optional]

The function to apply to the MESA parameter combination and MESA profile data to determine the parameter value
possibilities to use to construct the grid of GYRE runs to perform.

* Examples

Calculate 1=0, 1=1, and 1=2 oscillations for profiles with a star age,
—greater than 1 Gyr
def calc_gyre_params (mesa_params, mesa_data) :

return ({
"profile": mesa_datal[mesa_data["star_age"] > 1000000000] ["profile"]
"1 [0, 1, 2]

2.4.4 gyre_derived

function[dict, pd.DataFrame, dict, dict] - [Optional]

The function to apply to each group of MESA parameter combination, MESA profile data, and GYRE parameter
combination to extract additional values plug into the GYRE config template specified in gyre_config.

e Examples

Use a different frequency range for each 1 value

def calc_gyre_derived(mesa_params, mesa_data, gyre_params) :
derived = dict (gyre_params)

" n] * ZOO

"1 % 200 + 500

derived["freg min"] = gyre_params |

1
derived["freg max"] = gyre_params["1l

return derived

2.4. Stages 11

Megyr Documentation

12 Chapter 2. Configuration

CHAPTER 3

Indices and tables

* genindex
* modindex

e search

13

	Getting started
	Pre-requisites
	Setting up a project
	MESA
	GYRE
	Summary

	Configuration
	Input
	Output
	Settings
	Stages

	Indices and tables

